metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pintauer Tomislav

Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA

Correspondence e-mail: pintauert@duq.edu

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.006 Å R factor = 0.036 wR factor = 0.126 Data-to-parameter ratio = 17.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(2,2'-bipyridine- $\kappa^2 N, N'$)copper(I) trifluoromethanesulfonate

In the title compound, $[Cu(C_{10}H_8N_2)_2](CF_3O_3S)$, the Cu^I ion is chelated by two 2,2'-bipyridine (bpy) ligands in a distorted tetrahedral coordination geometry. The average Cu—N bond length is 2.024 (3) Å. The interligand dihedral angle is 87.5 (11)°. Weak C—H···O hydrogen bonding between the Cu^I complex cation and the trifluoromethanesulfonate anion stabilizes the crystal structure.

Comment

The $[Cu^{I}(bpy)_{2}][Y]$ compounds (where bpy = 2,2'-bipyridine; $Y = Br^{-}, Cl^{-}, PF_{6}^{-}, ClO_{4}^{-}, BF_{4}^{-}$ etc.) are very active catalysts in atom transfer radical polymerization (ATRP) (Matyjaszewski & Xia, 2001; Kamigaito et al., 2001; Wang & Mattyjaszewski, 1995) and have been studied extensively utilizing a variety of spectroscopic techniques (Pintauer & Matyjaszewski, 2005; Pintauer et al., 2003, 2000). The $[Cu^{I}(bpy)_{2}][Y]$ compounds are typically prepared by mixing $Cu^{I}Y$ or $[Cu^{I}(CH_{3}CN)_{4}][Y]$ with two equivalents of the ligand (Pintauer & Matyjaszewski, 2005). So far, structurally characterized $Cu^{I}(bpy)_{2}$ complexes include $[Cu^{I}(bpy)_{2}][ClO_{4}]$ (Munakata et al., 1987), $[Cu^{I}(bpy)_{2}][PF_{6}]$ (Foley et al., 1984) and $[Cu^{I}(bpy)_{2}][Cu^{I}Cl_{2}]$ (Skelton et al., 1991). We have successfully isolated the title compound, (I), which is the fourth member of this family.

The crystal structure of (I) consists of Cu^{I} complex cations and trifluoromethanesulfonate anions (Fig. 1). The Cu^{I} ion is coordinated by four N atoms from two bpy ligands in a distorted tetrahedral coordination geometry (Table 1). The average Cu-N bond length of 2.024 (3) Å is in agreement with those in previously characterized $[Cu^{I}(bpy)_{2}]^{+}$ cations. The 'bite' angles in (I) are smaller than 90°, which is due to the rigid geometry of the bidentate bpy ligand.

The dihedral angle between two chelating bpy ligands usually affects the redox potential of the $[Cu^{I}(bpy)_{2}]^{+}$ cation and consequently the stability constants of $[Cu^{I}(bpy)_{2}]^{+}$ and $[Cu^{II}(bpy)_{2}]^{2+}$ cations. The interligand dihedral angle of 87.5 (11)° in (I) is much higher than those found in

Received 27 January 2006 Accepted 20 February 2006

© 2006 International Union of Crystallography All rights reserved

Figure 1

The asymmetric unit of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Figure 2

A packing diagram of (I), showing the weak C-H···O interaction (dotted lines).

 $[Cu^{I}(bpy)_{2}]^{+}$ cited above, *viz.* $[Cu^{I}(bpy)_{2}][ClO_{4}]$ (75.2°), $[Cu^{I}(bpy)_{2}][PF_{6}]$ (44.6°) and $[Cu^{I}(bpy)_{2}][Cu^{I}Cl_{2}]$ (76.2°).

Weak $C-H \cdots O$ hydrogen bonding occurs between the Cu^I complex cation and trifluoromethanesulfonate anion (Table 2 and Fig. 2), which stabilizes the crystal structure of (I).

Experimental

Dry and degassed dichloromethane (10 ml) was added, under argon, to a Schlenk flask containing $[Cu^{I}(CF_{3}SO_{3})]_{2} \cdot C_{6}H_{5}CH_{3}$ (0.100 g, 0.193 mmol) and 2,2'-bipyridine (0.0604 g, 0.387 mmol). The reaction mixture was stirred at room temperature for 30 min and the solvent was evaporated under vacuum. The product was washed with 2 \times 10 ml of pentane and dried under vacuum to yield 0.176 g (87%) of (I). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature.

Mo $K\alpha$ radiation

reflections

 $\theta = 2.4 - 21.1^{\circ}$ $\mu = 1.15~\mathrm{mm}^{-1}$

T = 273 (2) K

Needle, red

Cell parameters from 4628

 $0.30 \times 0.15 \times 0.07 \text{ mm}$

Crystal data

[Cu(C10H8N2)2](CF3O3S) $M_r = 524.98$ Orthorhombic, $P2_12_12_1$ a = 9.3749 (4) Å b = 11.6692 (5) Å c = 20.0628 (9) Å V = 2194.82 (17) Å³ Z = 4 $D_{\rm r} = 1.589 {\rm Mg} {\rm m}^{-3}$

Data collection

Bruker SMART APEX-II	5247 independent reflections
diffractometer	3736 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.039$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.9^{\circ}$
(SADABS; Sheldrick, 2002)	$h = -12 \rightarrow 12$
$T_{\min} = 0.810, \ T_{\max} = 0.920$	$k = -15 \rightarrow 15$
22333 measured reflections	$l = -26 \rightarrow 26$

Refinement

Refinement on F^2	w
$R[F^2 > 2\sigma(F^2)] = 0.036$	
$wR(F^2) = 0.126$	(4
S = 0.81	Δ
5247 reflections	Δ
298 parameters	A
H-atom parameters constrained	
	_

$= 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $\Delta/\sigma)_{\rm max} = 0.001$ $\rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^2$ $\rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$ bsolute structure: Flack (1983), 2274 Friedel Pairs Flack parameter: 0.003 (15)

Table 1

Selected geometric parameters (Å, °).

	2 034 (3)	Cu1-N3	2 004 (3)
Cu1-N2	2.005 (3)	Cu1-N4	2.046 (3)
N3-Cu1-N2	131.04 (11)	N3-Cu1-N4	81.56 (11)
N3-Cu1-N1	127.34 (12)	N2-Cu1-N4	126.56 (12)
N2-Cu1-N1	81.45 (10)	N1-Cu1-N4	113.67 (11)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2\cdots O2^{i}$	0.93	2.45	3.359 (5)	165
$C8 - H7 \cdots O3^{ii}$	0.93	2.57	3.478 (5)	166

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

H atoms were positioned geometrically (C–H = 0.93 Å) and treated with a riding model in subsequent refinement cycles. The isotropic displacement parameters were set to $1.2U_{\rm eq}$ of the carrier atom.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2000); software used to prepare material for publication: *SHELXTL*.

Financial support from Duquesne University (Start-up Grant) is greatly acknowledged.

References

Bruker (1998). SMART (Version 5.0) and SAINT (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Foley, J., Tyagi, S. & Hathaway, B. J. (1984). J. Chem. Soc. Dalton Trans. pp. 1-5.

Kamigaito, M., Ando, T. & Sawamoto, M. (2001). *Chem. Rev.* **101**, 3689–3746. Matyjaszewski, K. & Xia, J. (2001). *Chem. Rev.* **101**, 2921–2990.

- Munakata, M., Kitagawa, S., Asahara, A. & Masuda, H. (1987). Bull. Chem. Soc. Jpn, 60, 1927–1929.
- Pintauer, T., Jasieszek, K. & Matyjaszewski, K. (2000). J. Mass Spectrom. 35, 1295–1299.
- Pintauer, T. & Matyjaszewski, K. (2005). Coord. Chem. Rev. 249, 1155–1184.
- Pintauer, T., Reinohl, U., Feth, M., Bertagnolli, H. & Matyjaszewski, K. (2003). Eur. J. Inorg. Chem. 11, 2082–2094.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
- Skelton, B. W., Waters, A. F. & White, A. M. (1991). Aust. J. Chem. 44, 1207– 1215.
- Wang, J. S. & Mattyjaszewski, K. (1995). J. Am. Chem. Soc. 117, 5614-5615.